INTRODUCTION

Composting is a process whereby the organic materials are aerobically transformed into a product that can be applied to soil without any detrimental effects. Vermicomposting is the biotechnological process where earthworms are used to convert the waste materials and produce a quality product. It contains macro and micro nutrients like nitrogen, phosphorus, potassium calcium, magnesium iron, manganese and zinc. These nutrients have positive effect on the plant growth, yield, soil fertility and soil microbes (Thamaraj et al., 2011).

The organic amendments like composts and vermicomposts have a positive influence on the quality of soil. Angelova et al. (2013) carried out a study to assess the effect of compost and vermicomposts applications on the physico chemical properties of soil and their efficiency to reduce the metal toxicity. They observed that application of these organic manures had a significant influence on the soil properties. The amendments have shown apparent increases in the organic matter, macro and micro nutrient contents. They also reported that the amendments decreased the heavy metals concentration in the soil which might be caused due to immobilization by the humic substances from compost and vermicomposts application. These findings support the utility of organic amendments for reducing the metal toxicity and phyto remediation ability.

The utilization of composts are efficient in improving soil aggregation, structure and fertility, increasing microbial diversity and populations, improving the moisture holding capacity of soils, increasing cation exchange capacity and leading to better crop yields(Zinc and Allen, 1998). Many researchers have documented the quality of vermicomposts in terms of their efficiency for improving soil quality and thereby the plant growth.
Orozco et al. (1996) have reported that vermicomposts contain most nutrients in plant available forms such as nitrates, phosphates and exchangeable calcium and soluble potassium. According to Edwards (1998) they influence the growth and productivity of plants. The experiments conducted with vermicomposts under greenhouse and field have also resulted in improved growth and yield of cereals and legumes, vegetable, ornamental and flowering plants and various field crops (Chan and Griffiths, 1988; Atiyeh et al., 2000; Arancon et al., 2004).

In a bioremediation study using vermitechnology, there was considerable improvement in the soil quality which establishes the importance of vermicomposts application for soil properties. This method of reclamation was found to be sustainable (Ansari, 2008). Vermicomposts and composts are prepared using organic constituents which are piled and moistened and permitted to undergo a thermophilic decomposition resulting in an end product rich in humus and microbial populations. They also contain plant available form of nutrients and growth hormones. The vermicomposts also provide protection against various plant diseases (Moradi et al., 2014).

Jayakumar et al. (2011) have reported that the vermicomposted turkey litter applied paddy plots have improved the electrical conductivity, nutrients like total nitrogen, potassium, calcium, manganese, copper, iron and zinc. The paddy growth and yield were observed to be improved and the microbial population was also increased due to the vermicomposts application. The present study was conducted to evaluate the effect of composts and vermicomposts prepared from Parthenium and poultry manure on the post harvest soil of chickpea and its residual effect on radish grown after incorporating chickpea into soil.

MATERIALS AND METHODS

A pot culture experiment was carried out to assess the effect of fresh, composted and vermicomposted Parthenium and poultry droppings on the post harvest soil physico chemical parameters of chickpea grown soil and radish grown after incorporating chickpea into the soil. The experiment was set up in a completely randomized design with three replications.

The treatment details were as follows,

- **T0**: Control – Red loamy soil (7 kg)
- **T1**: Fresh Parthenium at 35 g per pot
- **T2**: Composted Parthenium at 26.25 g per pot
- **T3**: Composted Parthenium at 35.0 g per pot
- **T4**: Composted Parthenium at 43.75 g per pot
- **T5**: Vermicomposted Parthenium at 26.25 g per pot
- **T6**: Vermicomposted Parthenium at 35.0 g per pot
- **T7**: Vermicomposted Parthenium at 43.75 g per pot
- **T8**: Poultry droppings at 35.0 g per pot
- **T9**: Composted poultry droppings at 26.25 g per pot
- **T10**: Composted poultry droppings at 35.0 g per pot
- **T11**: Composted poultry droppings at 43.75 g per pot
- **T12**: Vermicomposted poultry droppings at 26.25 g per pot
- **T13**: Vermicomposted poultry droppings at 35.0 g per pot
- **T14**: Vermicomposted poultry droppings at 43.75 g per pot
- **T15**: N : P : K

Soil Sample Analysis

The soil samples were collected after harvesting the chickpea and radish, then dried in shade and crushed and made to pass through 2mm sieve for soil sample analysis. The nitrogen (Micro kjeldahl method by Humphries, 1956), phosphorus (Jackson, 1973), potassium (Piper, 1966) and micronutrients namely, iron, zinc, manganese and copper (Jackson, 1973) were analysed for these samples. The data collected from the different analyses were subjected to statistical analysis as per the procedure outlined by Panse and Sukhatme (1978).

RESULTS AND DISCUSSION

Post-Harvest Soil Analysis

Chickpea (Cicer arietinum)

The profiles of the macro and micronutrients in the post-harvest soil were analyzed and depicted in Table 1.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Available nutrients (g kg⁻¹)</th>
<th>Micronutrients (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nitrogen</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>T0</td>
<td>0.44</td>
<td>0.03</td>
</tr>
<tr>
<td>T1</td>
<td>0.48</td>
<td>0.04</td>
</tr>
<tr>
<td>T2</td>
<td>0.48</td>
<td>0.07</td>
</tr>
<tr>
<td>T3</td>
<td>0.48</td>
<td>0.06</td>
</tr>
<tr>
<td>T4</td>
<td>0.51</td>
<td>0.05</td>
</tr>
<tr>
<td>T5</td>
<td>0.49</td>
<td>0.05</td>
</tr>
<tr>
<td>T6</td>
<td>0.50</td>
<td>0.06</td>
</tr>
<tr>
<td>T7</td>
<td>0.49</td>
<td>0.04</td>
</tr>
<tr>
<td>T8</td>
<td>0.50</td>
<td>0.06</td>
</tr>
<tr>
<td>T9</td>
<td>0.51</td>
<td>0.07</td>
</tr>
<tr>
<td>T10</td>
<td>0.57</td>
<td>0.05</td>
</tr>
<tr>
<td>T11</td>
<td>0.45</td>
<td>0.08</td>
</tr>
<tr>
<td>T12</td>
<td>0.47</td>
<td>0.05</td>
</tr>
<tr>
<td>T13</td>
<td>0.48</td>
<td>0.06</td>
</tr>
<tr>
<td>T14</td>
<td>0.57</td>
<td>0.12</td>
</tr>
<tr>
<td>T15</td>
<td>0.47</td>
<td>0.12</td>
</tr>
</tbody>
</table>

| SEd (0.05) | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.15 | 0.13 |
| SEd (0.04) | 0.04 | 0.02 | 0.03 | 0.03 | 0.03 | 0.31 | 0.27 |

SEd – Standard Error Deviation; CD – Critical Difference; DAS – Days After Sowing
Macronutrients
Among the various applications, T₁₀ (Composted poultry droppings at 35 g per pot) and T₁₄ (Vermicomposted poultry droppings at 43.75 g per pot) registered the highest N content (0.57 g kg⁻¹) in the soil after harvest. Highest P content was observed in T₁₄ and T₁₅, N : P : K (0.12 g kg⁻¹) among the treatments. T₁₄ recorded the highest value of 0.88 g kg⁻¹ of K among the different treatments. From the results it could be observed that vermicomposted poultry droppings at 43.75 g per pot application have improved all the macro nutrients of the soil.

Micronutrients
Maximum zinc content was found in T₅, Vermicomposted Parthenium at 26.25 g per pot, T₁₄ and T₁₅ (1.24 ppm). Maximum copper content was in T₀, control soil (1.34 ppm) compared to treated plants. Iron content was higher in T₅ and T₁₅ (4.23 ppm) compared to other treatments. Higher manganese content was recorded in T₃, Composted Parthenium at 35.0 g per pot and T₄, Composted Parthenium at 43.75 g per pot (6.80 ppm) soils among the applications. The decomposed Parthenium have an influence on the micro nutrients content.

Radish (Raphanus sativus) Grown after Incorporating Chickpea
The profile of available macronutrients and micronutrients of the soil is given in Table 2.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Available nutrients (g kg⁻¹)</th>
<th>Micro nutrients (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nitrogen</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>T₀</td>
<td>0.44</td>
<td>0.03</td>
</tr>
<tr>
<td>T₁</td>
<td>0.45</td>
<td>0.04</td>
</tr>
<tr>
<td>T₂</td>
<td>0.47</td>
<td>0.06</td>
</tr>
<tr>
<td>T₃</td>
<td>0.48</td>
<td>0.06</td>
</tr>
<tr>
<td>T₄</td>
<td>0.49</td>
<td>0.04</td>
</tr>
<tr>
<td>T₅</td>
<td>0.47</td>
<td>0.06</td>
</tr>
<tr>
<td>T₆</td>
<td>0.48</td>
<td>0.04</td>
</tr>
<tr>
<td>T₇</td>
<td>0.46</td>
<td>0.07</td>
</tr>
<tr>
<td>T₈</td>
<td>0.45</td>
<td>0.04</td>
</tr>
<tr>
<td>T₉</td>
<td>0.45</td>
<td>0.05</td>
</tr>
<tr>
<td>T₁₀</td>
<td>0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>T₁₁</td>
<td>0.44</td>
<td>0.05</td>
</tr>
<tr>
<td>T₁₂</td>
<td>0.46</td>
<td>0.06</td>
</tr>
<tr>
<td>T₁₃</td>
<td>0.45</td>
<td>0.06</td>
</tr>
<tr>
<td>T₁₄</td>
<td>0.44</td>
<td>0.06</td>
</tr>
<tr>
<td>T₁₅</td>
<td>0.53</td>
<td>0.09</td>
</tr>
</tbody>
</table>

SEd = Standard Error Deviation; CD – Critical Difference; DAS – Days After Sowing

Macronutrients
Among different treatments T₁₄, Vermicomposted poultry droppings at 43.75 g per pot exhibited increase in contents of nitrogen (0.58 g kg⁻¹), phosphorus (0.09 g kg⁻¹) and potassium (1.00 g kg⁻¹).

Micronutrients
T₁₂, Vermicomposted poultry droppings at 35.0 g per pot and T₁₄, Vermicomposted poultry droppings at 43.75 g per pot were found to contain higher contents of zinc (1.26 ppm) and copper (1.40 ppm). Highest iron content of 4.0 ppm was found in T₁₅. The manganese content of soil was more in T₂, T₃ and T₄ (Composted Parthenium at 26.25 g per pot, 35.0 g per pot and 43.75 g per pot) as 6.80 ppm.

Any organic waste application aids in moisture conservation which is utilized for better root penetration and crop growth. In general incorporation of organic waste enhances the moisture content of the soil. This enhancement could be attributed to the higher water holding capacity of the soil due to the influence of organic waste application (Son, 1995). Mary and Sivagami (2014) have reported that the vermicomposts is rich in nitrogen, phosphorus, potassium and micro nutrients namely, iron, zinc, magnesium and calcium. And the soil analysis after harvest indicated an increased nitrogen and potassium. They also suggested that the utilization of locally available organic materials can be used to replenish the physio chemical properties of soil.

Studies by Chattopadhyay et al. (1997) revealed that use of vermicompost is beneficial in maintaining higher status of fertility in red and lateritic soils and in reducing the need for application of inorganic nutrients in such soils. Baral et al. (1997) stated that vermicompost was effective in maintaining higher fertility status of the soils at residual stages which were considered to be beneficial for cultivation of succeeding crops.

Purakayastha and Bhatnagar (1997) and Senthilkumar et al. (2000) have reported that vermicompost influences the biological properties of soil which in turn improves its fertility. Saturated hydraulic conductivity of clay soil and water holding capacity of light textured sandy soil improves with application of vermicompost. Decrease in bulk density, increase in porosity and better water conducting properties of the soil is mainly due to the action of gum compounds, polysaccharides and fulvic acid compounds of organic matter on the soil structure (Manickam, 1993). Zhao and Fuzhen (1992) have also reported that mixing of N fertilizer and vermicompost reduced N loss and increased biological fixation of nitrogen.
Hiranmai Yadav

Composted pig and horse manure application to soil increased macronutrients as well as trace elements (Wong, 1985). The available soil N after chickpea harvest was increased due to the incorporation of organic manures (Raju et al., 1991). Bachthaler and Wonneberger (1974) have reported that application of poultry manure increased available phosphate in soil. Sistani et al. (2004) observed that P, Cu, Zn, Mn and Fe accumulate in soil receiving broiler litter. Available P in the soil was increased in the treatments that received chemical fertilizer. Higher level of P in the soil is accumulated by long-term annual application of compost and chemical fertilizers (Park et al., 2004).

The results of Pandit and Jafri (1986) showed that the soil micronutrient needs of sugarcane (Saccharum officinarum) except Zn were met by green manuring. It is because of its power to mobilize micronutrients from hitherto unavailable sources in soil. The post-harvest soil of sugarcane supplemented with green manure had more Fe, Cu and Mn and decreased Zn content. Somasundaram et al. (1996) reported that green manuring significantly influenced the available nutrient in the soil. Available N, P and K in the soil tended to increase even after two rice (Oryza sativa) crops due to the application of green manure. Available soil N was higher when mung straw was incorporated (Rekhi and Meelu, 1983).

Pandit and Jafri (1986) observed that plots receiving no manure also showed at the end of the experiments, a higher level of Fe, Mn and Cu availability in sugarcane fields and they related this to the possibility of sugarcane root exudates in the process of micronutrients mobilization. Kachot et al. (2001) observed that available N and P in soil improved with combined application of organic, inorganic and biofertilizers. Soil available nutrients were higher at higher level of fertilization and organic amendments application to groundnut (Arachis hypogaea) (Christopher and Rajagopal, 1999).

Green manuring with prickly sesban maintained and improved the available P and K status in soil (Mohapatra and Jee, 1993). Green manuring significantly increased the availability of Fe, Cu and Mn in rice grown soil (Bhattacharya and Mandal, 1996). This may be attributed to the greater nutrient binding capacity of soil enriched with organic matter. Green manuring with sunhemp (Crotalaria juncea) in combination with 40 kg N ha\(^{-1}\) applied to rice improved the available N, P and K of the soil (Sharma et al., 2000). Bindhu et al. (2013) have also documented the influence of biodynamic compost in improving the crop quality as it improves the soil characters.

The quality and value of organic amendments are measured in terms of their contributions to nutrient supplies and soil fertility (Arancon et al., 2006). The application of vermicomposts to straw berries was found to increase the dehydrogenase activity and microbial biomass-N. Increase in microbial population is a key indication for factors influencing the rate of nutrient cycling, production of plant growth regulating materials and build up plant resistance or tolerance to pathogens. Saritha et al. (2013) have reported the significance of organic manures in the farming system. Romina et al. (2011) have also documented the positive effect of vermicomposts application on soils chemical and biological properties.

CONCLUSIONS

The application of composts and vermicomposts improves the organic content and plant available nutrients. The soil organic content in turn enhances the microbial activity and humus content of the soil. Organic manuring using composts and vermicomposts helps to improve the soil structure, water holding capacity and also a sustainable supply of macro and micro nutrients. It supports the growth of beneficial micro organisms which can improve further decomposition of added plant residues, weeds and animal residues and animal excreta. They have a residual effect when used in crop rotation. The legumes and non legumes can be benefitted by the organic farming.

Conflict of Interest

Conflict of interest none declared.

REFERENCES

Conflict of Interest

Conflict of interest none declared.

REFERENCES

CONCLUSIONS

The application of composts and vermicomposts improves the organic content and plant available nutrients. The soil organic content in turn enhances the microbial activity and humus content of the soil. Organic manuring using composts and vermicomposts helps to improve the soil structure, water holding capacity and also a sustainable supply of macro and micro nutrients. It supports the growth of beneficial micro organisms which can improve further decomposition of added plant residues, weeds and animal residues and animal excreta. They have a residual effect when used in crop rotation. The legumes and non legumes can be benefitted by the organic farming.

Conflict of Interest

Conflict of interest none declared.

REFERENCES

Hiranmai Yadav

